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Mechanical Systems with Nonlinear Constraints 
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A geometrical formalism for nonlinear nonholonomic Lagrangian systems is 
developed. The solution of the constrained problem is discussed by using almost 
product structures along the constraint submanifold. Constrained systems with 
ideal constraints are also considered, and Chetaev conditions are given in 
geometrical terms. A Noether theorem is also proved. 

1. I N T R O D U C T I O N  

The theory of nonholonomic mechanical systems dates back to the last 
century. The constraint functions are functions on the position and velocities 
which constrain the motion to some submanifold of  the phase space. Hertz 
(1894) gave a classification of constraints into holonomic (or integrable) and 
nonholonomic (or nonintegrable) constraints. I f  we are only in the presence 
of holonomic constraints, we reduce the configuration space to a submanifold 
on which the mechanical system is free. But if  the constraints are purely 
nonholonomic, then not all the velocities are allowable, although all the 
positions are permitted. 

The classification of  constraints is very clear if we use a geometrical 
setting. The configuration space for a free system is a manifold Q (the 
configuration manifold) and the phase space of velocities is its tangent bundle 
TQ. The nonholonomic constraints are given by demanding that the only 
allowable velocities have to belong to a submanifold M of TQ. (The possible 

Instituto de Matemfiticas y Ffsica Fundamental, Consejo Superior de Investigaciones Cientffi- 
cas, Serrano 123, 28006 Madrid, Spain; e-mail: mdeleon@pinarl.csic.es. 

2Departamento de Matem~itica Fundamental, Facultad de Matem~iticas, Universidad de la 
Laguna, La Laguna, Tenerife, Canary Islands, Spain; e-mail: jcmarrer@ull.es. 

3 Departamento de Economfa Aplicada Cuantitativa, Facultad de Ciencias Econ6micas y Empre- 
sariales, UNED, 28040 Madrid, Spain; e-mail: dmartin@sr.uned.es. 

979 
0020-7748/97/0400-0979512.50/0 �9 1997 Plenum Publishing Corporation 



980 de Le6n, Marrero, and Martin de Diego 

holonomic constraints were eliminated since they define Q.) The submanifold 
M is defined by the vanishing of a family of independent constraints qbi(q A, 
vA), 1 ----- i ----- m, A = 1 . . . . .  dim Q, where (qa, V A) are fibered coordinates. 
The most usual case is when the submanifold M is linear, or, in other words, 
M is the total space of a vector subbundle of TQ. Thus, the constraints have 
the form ~i(q A, v A) = t~ia(qB)v A, where (~ia are functions on Q. In de L6on 
and Martin de Diego (1996b,e) we studied a geometrical setting for this 
kind of linear nonholonomic constraint. We only treated time-independent 
or scleronomic constraints, but in de L6on et al. (1996) we also studied the 
case of time-dependent or rheonomic constraints by using the geometrical 
setting of jet manifolds. 

The purpose of this paper is to extend our results to the case of nonlinear 
constraints. In order to obtain the dynamics, it is necessary to assume some 
hypotheses on the constraints. This condition is the so-called admissibility 
of TM. Note that TM is a distribution on TQ along M, so we have extended 
the notion of admissibility introduced by Vershik and Faddeev (1972) (Defini- 
tion 2.1). With this assumption, and if the system is regular (Definition 3.1), 
we obtain an almost product structure on TQ along M [that is, a pair of 
complementary projectors (~,  ~)] such that the projection 9~(~L) of the 
Euler-Lagrange vector field ~L which gives the dynamics of the free Lagran- 
gian L is just the solution of the constrained motion equations. It should be 
noted that if L is of natural type, i.e., L = T - V, where T is a kinetic energy 
coming from a Riemannian metric on Q, and V is a potential energy (a 
function on Q), the system is always regular. 

If the constraints are ideal, i.e., the work of the forces of reaction of 
each constraint is equal to zero, the admissibility condition is nothing but 
the geometrical translation of the so-called Chetaev conditions. In this particu- 
lar case, we construct a distribution H on TQ along M which is symplectic 
in (TTQ, roD, where o~L is the symplectic PoincarE-Cartan two-form obtained 
from L. Thus, if we restrict toL and dEt~ to H, where EL is the energy function 
associated with L, the motion equation takes the usual form for a free Hamilto- 
nian system at each fiber of H. This procedure extends that by Bates and 
Sniatycki (1992; Bates et al., 1996) for the linear case. We define a new 
almost product structure on TQ along M associated with the decomposition 
(TTQ)IM = H ~3 H ' ,  which gives, in fact, the dynamics by projecting ~L- 
We also prove a Noether theorem which generalizes one proved by Cushman 
et al. (1995) for linear constraints (see also de la Torre Ju~rez, 1996). Finally, 
we study some examples. 

2. G E O M E T R I C A L  THEORY OF CONSTRAINTS 

Let Q be an n-dimensional manifold with tangent bundle TQ. The canoni- 
cal projection will be denoted by "rQ: TQ ---) Q. Take bundle coordinates 
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(qa, VA). There exists a canonical (1, 1) tensor field J on TQ locally defined by 

0 
J = dqa | 

Ov A 

J is called the canonical almost tangent structure of TQ (de Lron and 
Rodrigues, 1989), or sometimes, vertical endomorphism (Saunders, 1989). 
We denote by C the Liouville vector field on TQ; C is the infinitesimal 
generator of the dilations on TQ, and it is locally expressed by 

0 
C = v  a 

Ov A 

We will extend the notion of admissible distribution on TQ introduced by 
Vershik and Faddeev (1972). 

Definition 2.1. Let M be a submanifold of TQ and D a distribution on 
TQ along M. We say that D is admissible if 

dim ~ = dim(J*D~ 

for all x E M, where D ~ denotes the annihilator of D. 

It is not hard to prove that D is admissible if and only if the linear mapping 

J'x: D~ --~ (J*D~ 

is an isomorphism. Thus, D is admissible if and only if D ~ does not contain 
semibasic forms, since ker J*  = 0. 

From now on, we will assume that D is admissible. 
Suppose now that L: TQ ---> R is a regular Lagrangian function on TQ. 

Thus, the Hessian matrix (OZLlOvaOv 8) of L with respect to the velocities is 
nonsingular. If we define a two-form ~oL = -dd*(dL) ,  we deduce that L is 
regular if and only if ~OL is symplectic. In this case, if EL = CL - L is the 
energy function associated with L, we know that the equation 

ixtOz = dEL 

has a unique solution ~L which is a second-order differential equation (SODE), 
say J~L = C. Furthermore, the solutions of ~ are just the solutions of the 
Euler-Lagrange equations for L: 

v a - dq A 

dt 

~L will be called the Euler-Lagrange vector field. From now on, we will 
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assume that L is regular. Since COL is symplectic, it defines a Poisson bracket 
{','}L by 

{f, g k  = ~dx: ,  x~) 

for all functions f, g on TQ, where X: is the Hamiltonian vector field given 
by iX/tOL = df. Thus, the evolution of an observable f is given by 

f= ~L(f) = If' EL}L 
If we denote by ~: ~g(TQ) ----> Al(TQ) the C~(TQ)-module isomorphism given 
by X ~ iXtOL, and # = ~-1, we have Xf = #(df). 

Consider the following system of equations: 

{iXOJL -- dEL ~ J*D ~ 
X E D A TM (2) 

along M. The solutions of (2) will be termed the solutions of the problem 
(L, D, M) (on M). In most examples constraints arise as a submanifold of 
the whole tangent space TQ. In such a case, the solution of the constrained 
dynamics is a solution of the problem (L, D, M), where we now take D = 
TM. These considerations motivate our study of the problem (L, D, M). 

Take a local basis {pq . . . . .  IJ'm} of D~ hence {J*lx~ . . . . .  J*l~m} is a 
local basis of J*D ~ Moreover, let { ~ ,  1 --< ct -- 2n - dim M} be a family 
of independent functions on TQ defining M, or, in other words, a system of 
independent constraint functions. With these notations, equations (2) can be 
locally written as follows: 

iXt~L = dEL + )kiJ*~i 
~l~i(X ) 0 (3) 

d,~,~,(X) o 

along M, where k i are some Lagrange multipliers to be determined. It follows 
that any solution of (2) is a SODE along M. 

We will denote by Zi the symplectic gradient of the 1-form J*P~i with 
respect to COL, Zi = #J*P~i. Notice that, because J*P~i is semibasic, Zi is 
vertical. In fact, if I~i = Ixadq A + ~iAdV A, we have 

J *[,l, i = ~iAdq A 

and hence Zi = --~LiA WAn O/OV B, where (W AB) is the inverse matrix of the 
Hessian matrix (WAn = 02LIOvA OvB). 

By using Poisson brackets, we can equivalently write (3) as follows: 

~Ld~a) + h i~dz / )  = 0 

{(~ot, EL}L "[- xizi(6c~) 0 (4) 

along M. 
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The next result gives a necessary and sufficient condition to ensure the 
existence of solutions of  equations (2). First, we introduce some notations. 
We set 

S = # ( J 'D~  SL = #(J*D ~ ~ (dEL)) = S ~) (~L) 

Notice that we have assumed that ~L(X) ~ Sx for x ~ M N C, where C is the 
zero section of TQ. In fact, this condition says that EL is an independent 
constraint of  the remainder. Thus, S and SL are distributions on TQ along M. 

Proposition 2.2. The problem (L, D, M) has a solution (on M) if and 
only if 

S n (D n TM) C SL 71 (D n TM) 

along M. 

Proof. Assume that the problem (L, D, M) has a solution. This means 
that there exists at least a vector field X on M satisfying (2). Let {Z;, 1 ----- i 
--< m} be a local basis of  S, hence {Zi, ~L} is a local basis of  SL. ThUS, X = 
~L + hizi for some local functions h i. Because X ~ TD f) S, then X ~ SL 
f') (D fq TM) and X ~ S f'l (D ('1 TM). 

Conversely, assume that 

S I-1 (D f'l TM) C SL fq (D 71 TM) 
+ 

Thus there exists a vector field Y on M such that Y ~ SL n (D n TM), but 
Y ~t S n (D n TM). Therefore, Y = h~L + hiZi, where h does not vanish 
at any point. This implies that X = (l lh)Y is a solution of  (2). �9 

Next, assume that the problem (L, D, M) has no solutions on M, or, 
equivalently, there exist points x ~ M such that Sx n (Dx n TxM) = (SDx 
n (Dx n TxM). We can develop a constraint algorithm as follows. 

Put 

M2 = {x ~ MIS# I"1 (Dx n T~M) C (SL)x n (Dx n TxM)} 

Thus, there exist solutions on M2, but they are not necessarily tangent to M2. 
Therefore, we put 

M3 = Ix E M~ISx n (Dx n TxM2) c (&)x n (Ox n V~Mg} 
4- 

and we obtain solutions which are tangent to M2, but they are not necessarily 



984 de Le6n, Marrero, and Martin de Diego 

tangent to M3. We proceed further and obtain a sequence of constraint 
submanifolds 

�9 " ~ M k ~ ' " M 3 ~ M 2 ~ M ~  = M  

where for any k > 1 we have 

Mk+l = {x ~ MklS~ n (Ox O TxMk) C (SL)x r'l (Dx O T~Mk)} 
§ 

Three possibilities may occur. 
Case L There exists an integer k such that Mk = 0. In this case, the 

problem (L, D, M) has no solution. 
Case II. There exists an integer k such that Mk :/: 0, but dim Mk = O. 

In this case, Mk consists of  isolated points and the only solution is X = 0. 
Case III. There exists an integer k such that Mk+~ = Mk, with dim Mk 

> 0. Thus, there exists a vector field X on the final constraint submanifold 
My = Mk such that 

ix, to L -- dE  L ~ J * D  ~ 
X E D n TMf (5) 

along My. 
Assume that S n D = 0. Therefore, we have S O (D n T M )  = 0 and 

0 < dim(SL)x n (D~ n T~M) --< 1 for all x e M. If  dim(SL)x N (D~ O TxM) 
= 1 for all x e M, the system (L, D, M) has solution on M. 

Proposition 2.3. If  the Hessian matrix (WAn) of L is positive or negative- 
definite, then S n D = 0. 

Proof. Let {ixi = I.Liadq A + fxiadv a } be a local basis of  D ~ Then J*P~i 
= I~LiAdq A and {Zi = #(J*lxi) = - ~ W  An O/Ov n, i = 1 . . . . .  n} is a local 
basis of  S. Since the matrix ( W  An) is positive or negative-definite, we deduce 
that the matrix (p~j(Zi)) = (-wAB~iAfXjS) is regular. Therefore, we conclude 
that S O D = 0. �9 

3. M E C H A N I C A L  S YS TEMS  W I T H  C O N S T R A I N T S  

In this section we will apply the results of  the preceding section to the 
particular case D = TM. This is the case of  a mechanical system subjected 
to linear or nonlinear nonholonomic constraints. 

Assume that D is just the distribution defined by the tangent bundle of  
the constraint submanifold M. Any function ~ :  TQ ---> R vanishing on M 
will be called a constraint. Since D = T M  is admissible, we have 

dim(TxM) ~ = dim J*((TxM)")  

for all x E g .  
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Let {(I) i" T O ~ R, i = 1, . . . ,  m} be a set of independent functions 
defining the constraint submanifold M. In other words, {~}  are a set of 
independent constraints. In principle, the functions ~i(q A, v 3) are not necessar- 
ily linear in the velocities. A global basis for (TM) ~ is {d~},  and equations 
(2) become 

ix.tot. - dEL E J*(ddPi) (6) 
X E T M  

along M. The solutions of (6) will be termed the solutions of the problem 
(L, M). Since 

jr162 O(~i dvA) O~)i 
J*(ddPi) = \Oqa dq a + OV--- X = Ov--- ~ dq a 

Equations (6) become 

ix, coL = dEL + h i O(~i OV A dqA (7) 

L dc~i(X) 0 

along M. 
Notice that if X ,  i is the Hamiltonian vector field associated with the 

constraint Oi, then Zi = - JX . i ,  Zi being the vector field Zi = #(J*(dOi)). 
From Proposition 2.2 the system (L, M) has solution if and only if Sx 

f3 TxM C (SDx f3 TxM for all x ~ M. We introduce the following definition 
§ 

of regularity. 

Definition 3.1. We say that the problem (L, M) is regular if S f'l TM = 
0 along M. 

In this case, we have 

dim Sx + dim TxM = dim Tx(TQ) = 2n, Vx ~ M 

and we obtain a decomposition of T(TQ) as a Whitney sum 

(TTQ)Iu = S �9 TM 

where (TTQ)~M denotes the restriction of the tangent bundle of TQ to the 
submanifold M. Hence, dim((SDx N TxM) = 1 for all x ~ M, and then there 
exists one and only one vector field ~L,M E SL N TM which satisfies the 
SODE condition along M, that is, JA~L,ML = C~ for all x ~ M. 

Remark 3.2. Observe that, from Proposition 2.3, if the Hessian matrix 
of L is positive or negative-definite, then the problem (L, M) is regular. For 
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instance, if L is a natural Lagrangian (i.e., L = T - V, where T = �89 B 
is the kinetic energy of a Riemannian metric g on Q and V: Q --~ R is a 
potential energy), then the problem (L, M) is regular (Bates and Sniatycki, 
1992; Carifiena and Rafiada, 1993; de L6on and Martin de Diego, 1996e). 

Furthermore, there are two complementary projectors @: (TFQ)~M --~ 
TM and ~: (TTQ)~M -~ S associated with the above decomposition. We will 
obtain below an explicit expression in local coordinates. 

Since the problem is regular, we know that the matrix ~ = (q/j), where 

(~ij : df~i(Zj) = Zj(l~i) : - w A B  O(~i O~j 
OV A OV n 

is regular, too. The projectors ~ and 9~ are respectively written as follows: 

= Id -  uzie d%,  =  uZ, e d %  

Thus, the vector field ~L,M can be obtained by projecting the Euler-Lagrange 
vector field ~L corresponding to the free Lagrangian system: 

~L,M "~- ~(~L)  : ~L -- (~iJ~L(f~j)Zi 

So, the projection onto Q of the integral curves of ~L,u satisfies the following 
Euler-Lagrange equations: 

d OL O__L_L __ hi O(Di 
ooA 

v A -  dq A 
dt 

Remark 3.3. It should be noticed that (~', ~) defines an almost product 
structure on the manifold TQ along the submanifold M. 

Consider now the vector bundle isomorphism ~:  T*TQ --~ T*TQ defined 
along M by 

The vector field ~c,u is the unique solution of the Proposition 3.4. 
equation 

ixtoL = ~(dEL) (8) 

along M. 

Proposition 3.4 is an alternative version of the above procedure to obtain 
the dynamics; we project the energy instead of the free Euler-Lagrange 
vector field. 
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3.1. Ideal Constraints 

In what follows, we continue under the assumption D = TM. 

Definition 3.5. A constraint function �9 is said to be ideal if the work 
of the forces of reaction of the constraint is equal to zero. The system (L, 
M) is said to be ideal if all the constraints are ideal. 

A constraint �9 is ideal if and only if J*(d~P)(X) = 0 for a solution X 
of (6). Since X satisfies the SODE condition, we obtain that a constraint 
is ideal if and only if 

0~  
V A ~ 0 

OV A 

which is equivalent to C(~p) ~ 0 (the symbol ~ means weakly equal or, in 
other words, equality on M). For instance, if a constraint is homogeneous 
of degree r on the velocities, then it is ideal because 

0~  
v A = r~I) ~ 0 

Ov A 

In particular, a linear constraint is always ideal. 
Thus, we get the following geometrical interpretation of ideal constraints. 

Proposition 3.6. The system (L, M) is ideal if and only if the Liouville 
vector field C is tangent to M. 

Remark 3.7. It should be noticed that the condition of admissibility for 
TM is nothing but the usual Chetaev condition for the constraints (Piron- 
neau, 1982). 

Denote by D v the distribution along M whose annihilator is J*(TM) ~ 

Lemma 3.8. If ~ is a SODE, then for any point x ~ M, we have 

~(x) ~ (DV)x r C(x) ~ TxM 

Proof. It follows from a direct computation. �9 

Consider the inclusion j :  M ---> TQ and the complementary projectors 
and ~ defined in the above section. We obtain the following. 

Proposition 3.9. If ~0M is the restriction of o~L to the constrained submani- 
fold M, then the solution ~L,M of the constrained dynamics satisfies the equation 

ixtoM = j*(~(dEL)) (9) 

Moreover, the unique vector field on M satisfying the SODE condition and 
equation (9) is just ~L,M. 
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Proof Since the vector field ~L,M satisfies (8), then it also satisfies (9). 
Now, let X be a vector field on M satisfying the SODE condition [that 

is, (JX = C)lm] such that iXCOM = j*(~(dEL)).  Then, we have that 

(ixcoL)(~(Y)) = ~(dEL)(~(Y))  

for all vector fields Yon TQ along M. Moreover, from Lemma 3.8 and using 
that ~Y ~ S and the fact that X satisfies the SODE condition, we obtain that 
(ixcoD(~LV) = #(dED(~LY) = O. 

Therefore, we conclude that ixcoL = #(dED, which implies that X = 
~L,M. �9 

Remark 3.10. Notice that to M is no longer symplectic, so that it may be 
another solution of the equation 

iXCOM = j *(~( dEL) ) 

Next, we will prove the following two lemmas. 

Lemma 3.11. (DO~ is coisotropic in (Tx(TQ), coL(x)) for all x E M. 

Proof In fact, since J*(TM) ~ is locally generated by semibasic l-forms, 
we deduce that 

(DO~ = S, C Vx (TQ) C (DO, 

for all x ~ M, where (DV)~ denotes the COL(X) complement of (D0x. �9 

Lemma 3.12. The problem (L, M) is regular (that is, S N TM = 0) if 
and only if the distribution H = D ~ t') TM along M is symplectic in (TTQ, coL)- 

Proof If S N TM = O, then 

S f-) TM = TM 71(DO • = 0  

and 

Tx(TQ) = (O0? �9 TxM, 

Hence, from Lemma 3.11 we obtain 

V x ~ M  

(DV)x = (DOx ~ @ (TxM N (DOx) = (DV)x ~ (3 Hx 

Therefore, we deduce that Hx is a symplectic subspace in (Tx(TQ), cot(x)) for 
all x ~ tl4. Conversely, assume that H is symplectic in (TTQ, coL). Take 

Z e Sx CI TxM = (DO~ f") TxM C (DO. CI TxM = Hx 

Because cot(x)(Z, W) = 0 for all W ~ H., we conclude that Z = O. �9 



Nonlinear Constraints 989 

Consider now, as in Bates and Sniatycki (1992) and Cushman et al. 
(1995), the restrictions ton and duE  to H of the symplectic form cot. and dEL, 
respectively. Since H is symplectic, there exists a unique solution on H of 
the equation 

ix~n = d n E  (10) 

Proposition 3.13. The solution of equation (10) is the vector field ~L,M- 

Proof  Since ~L,M is a solution of the problem (L, M), then, for each 
point x ~ M, ~L,~x) ~ TxM. From Lemma 3.8, ~L,M ~ D v. Therefore, ~L,M 

H and it is trivially a solution of equation (10). �9 

Since H is symplectic we obtain a new decomposition of the whole 
tangent space (of course, along the points of M): 

(TTQ)IM = H G H i 

and two new complementary projectors (associated with the above decompo- 
sition) arise: ~ :  (/TQ)tM ---> H and ~: (/7"Q)~M ---> H I. 

If {gPi, i = 1 . . . . .  m} is a set of independent functions defining the 
constraint submanifold M, then H • is locally generated by the vector fields 
X,i and Zi [Zi = #(J*(ddPi))], 1 <-- i <- m. In such a case, the projector 9. is 
locally defined as follows: 

"~ = ~ijZj (~ ddp i - ~iJX~) ~ J*d~p i -I- ~jk~il{l~k, (~)l}LZj ~ J*(df~i)  

where ~ij are the entries of the inverse matrix of ~ = (%u) = (Z/(~j)). 
Moreover, the projection by ~ of the Euler-Lagrange vector field also 

gives the solution of the constrained dynamics ~L,M, that is, 

Next, we will prove a Noether theorem which generalizes that proved in 
Cushman et al. (1995). 

A function f :  TQ --> R is said to be a constant of the motion if ~LM(fM) 
= 0 .  

Theorem 3.14 (Noether theorem). A function f: TQ ---> R is a constant 
of the motion of ~L,M if and only if the energy is constant along the integral 
curves of the vector field ~(Xf) ,  that is, (~(Xf))(EL) = O. 

Proof  Since 

i~,MtoL -- dEL ~ J * ( T M )  ~ 

then (i~L,MtoL -- dEL)(~(Xf))  = O. Therefore, 

to,(~L,~, ~(X:)) = ~(Xs)(E~) 
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Also, because {L,u ~ H, we deduce that 

coL(~L,M, ~(X:)) = coL(~L,M, X:) 
Thus, 

-- ~L,M(f) = (~(Xf  ) )( EL) 

which proves our result. �9 

Corollary 3.15. The energy function EL and the constraint functions qb l, 
. . . .  r m are constants of the motion. 

Proof. In fact, 

and 
m 

~(X.;) = 0 �9 

Remark 3.16. Obviously, the restriction of ~s to M vanishes, and then 
we do not obtain information concerning the integration of the dynamical 
system ~L,M on M. However, EL restricted to M is a first integral of ~L,M. 

Remark 3.17. As in Section 2, if the problem (L, M) is singular, that 
is, S f3 TM ~ O, or, equivalently, H = D v f3 TM is not symplectic in (TTQ, 
coL), we have a constraint algorithm which permits us to obtain a final 
constraint submanifold where a well-defined solution of the dynamics exists. 

This algorithm gives a sequence of constraint submanifolds 

" " - - ) M k - - ) ' " M 3 - - ) M 2 - - ) M I  = M  

where for any k > 1 we have 

M~+l = {x ~ M~ISx f3 TxMk C (SL)x f3 TxMk} 

Recall that SL = S �9 (~L)- If the above sequence stabilizes, i.e., there exists 
an integer k such that Mt = Mk+~, then there is at least a vector field X on 
/ I f /=  Mk such that 

ixcot. - dEL ~ J*(TM ~ 
(11) 

X ~ TMf 

along My. 

4. E X A M P L E S  

Example 4.1 (Linear Constraints) (de L6on and Martin de Diego, 
1996a,c-e; see also Giachetta, 1992; Koiller, 1992; Massa and Pagani, 1991, 



Nonlinear Constraints 991 

1995; Neimark and Fufaev, 1972; Rosenberg, 1977; Rumiantsev, 1978; Sarlet, 
1996a,b; Sarlet et al., 1995; Saunders et al., 1996; Vershik and Gershkovich, 
1994). Assume that M is a linear submanifold of  TQ, that is, M is the total 
space of a vector subbundle of  TQ or, in other words, M is a distribution on 
the configuration manifold Q. We denote by M v and M c the distributions on 
TQ whose annihilators are defined as follows. If  M ~ = (Ixi}, then 

(MO ~ = (p.~,  (MO ~ = (pY, p .~  

where ot v and ct c denote the vertical and complete lifts of  a 1-form ot on 
Q to TQ, respectively. The constrained motion equations can be written 
as follows: 

{(ixO~L -- dED e (MO ~ 
X ~ M r (12) 

along M. 
Moreover, we can consider M as a submanifold of  TQ. A straightforward 

computation shows that equations (12) are equivalent to equations (2) for 
the problem (L, M), namely 

ixtoL - dEL ~ J * ( T M )  ~ 

X ~ T M  

along M. 

Example  4.2 (Pironneau, 1982). Consider a little ring which rotates, 
without slipping, about a horizontal fixed curve. 

The Lagrangian function L: TR 3 ---> R is given by 

L = �89 2 + )}2 -I-- ~2) _ mgz  

and we take the quadratic constraint 

= 3~2 + )}2 + ~2 __ C (C ~. 0)  

which means that the module of the velocity would be constant. Notice that 
is not an ideal constraint. 

After some computations we obtain 

1 3~ 2 EL = "2 m(22 + + ~2) + mgz  

O~L = m dx ^ dSc + m dy A d~ + m dz ^ d~ 

0 0 0 0 
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Let M be the submanifold of TR 3 determined by the vanishing of  the function 
�9 . Notice that M is a fiber bundle over R 3 with typical fiber the two-sphere S 2. 

The annihilator of T M  is 

Therefore, 

(TM)  ~ = (d~b) = (~ dye + ~ d)  + ~ d~) 

J * ( T M )  ~ = {Yc dx + ~ dy + ~ dz) 

and S is generated by the vector field 

- ~  ~ + y ~ + ~  

According to Remark 3.2, the system is regular. 
The solution of the constrained problem is 

0x Tyy + ~0z c 0~ c 0:~ + - ~ 

Notice that the restriction of EL to M 

(ED,M = �89 + me, z 

is not a first integral of ~Lg- 

Example  4.3 (Appel's Example)  (Pironneau, 1982). The mechanical sys- 
tem is described by the Lagrangian function L: TR 3 --~ R given by 

L = � 8 9  2 + ) 2  + ~ 2 ) _ m g z  

and subjected to a quadratic constraint 

CI) = a2(.~ 2 + ))2) _ ~2 

Notice that �9 is an ideal constraint. 
EL, o~L, and ~L are the same as in the above example. 
Let M be the submanifold of  TR 3 defined by 

M = { ( x , y , z ,  Yc, S,,~) ~ TR31dP(x,y,z ,  Y c , ~ , ~ ) = O a n d g ~ O }  

The annihilator of TM is 

(TM)  ~ = (dd~) = (a2s d.r + a23> d)~ - ~ d2) 

Therefore, we get 

J * ( T M )  ~ = (a2s dx + a 2) dy - ~ dz) 
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and S is generated by the vector field 

0 0 Z = a2~ ~ + a23~ ~ - 
0---~ 

According to Remark 3.2, the system is regular. 
The solution of the constrained problem is 

0 0 0 ga 2 0 ga 2 0 ga 2 0 
~L,M = fC "~X + ~ ~y "[- s OZ s + a 2) R 0.~ s 1 + a 2) )) 03~ 1 + a z 0s 

Therefore, the motion equations are 

i ga 2 Yc 
x =  1 + a 2 s  

ga 2 
Y = 1 + a 2 s (13) 

ga 2 
Z" 1 + a  2 

From equations (13) we deduce that 

~ _ y _ ~ "  

and then the velocities are constrained to follow a fixed direction. 
The function f = s + [2a2g/(l + a2)]z is a constant of the motion of 

~L~t (in fact, f is a combination of EL and ~).  
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